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ABSTRACT 
The present paper deals with the determination of quasi static thermal stresses in a limiting thick circular plate 

subjected to arbitrary heat flux on upper and lower surface and the fixed circular edge is thermally insulated. 

Initially the limiting thick circular plate is at zero temperature. Here we modify Kulkarni (2009) and compute 

the effects of Michell function on the limiting thickness of circular plate by using stress analysis with internal 

heat generation and axisymmetric heat supply in terms of stresses along radial direction. The governing heat 

conduction equation has been solved by the method of integral transform technique. The results are obtained in 

a series form in terms of Bessel’s functions. The results for stresses have been computed numerically and 

illustrated graphically.  

Keywords: Quasi static thermal stresses, limiting thick plate  𝑀 ≠ 0 , limiting thin plate  𝑀 = 0 , internal heat 

generation, axisymmetric heat supply.

 

I. INTRODUCTION 
During the last century the theory of 

elasticity   has found of considerable applications 

in the solution of engineering problems. 

Thermoelasticity contains the generalized theory of 

heat conductions, thermal stresses. A considerable 

progress in the field of air-craft and machine 

structures, mainly with gas and steam turbines and 

the emergence of new topics in chemical 

engineering have given rise to numerous problems 

in which thermal stresses play an important role 

and frequently even a primary role. Nowacki [1] 

has determined the temperature distribution on the 

upper face, with zero temperature on the lower face 

and the circular edge thermally insulated. 

Bhongade and Durge [2] studied an inverse steady 

state thermal stresses in a thin clamped circular 

plate with internal heat generation. Bhongade and 

Durge [3] considered thick circular plate and 

discuss the effect of Michell function on steady 

state behavior of thick circular plate, now here we 

consider a  limiting thick circular plate subjected to 

arbitrary heat flux on upper and lower surface and 

the fixed circular edge is thermally insulated. 

Initially the plate is at zero temperature. Here we 

modify Kulkarni [4] and compute the effects of 

Michell function on the limiting thickness of 

circular plate by using stress analysis with internal 

heat generation and axisymmetric heat supply in 

terms of stresses along radial direction. The 

governing heat conduction equation has been 

solved by the method of integral transform 

technique. The results are obtained in a series form 

in terms of Bessel’s functions. The results for 

stresses have been computed numerically and  

 

illustrated graphically. A mathematical 

model has been constructed with the help of 

numerical illustration by considering steel (0.5% 

carbon) limiting thick circular plate. No one 

previously studied such type of problem. This is 

new contribution to the field.  

    The direct problem is very important in 

view of its relevance to various industrial 

mechanics subjected to heating such as the main 

shaft of lathe, turbines and the role of rolling mill, 

base of furnace of boiler of a thermal power plant 

and gas power plant. 

 

II. FORMULATION OF THE 

PROBLEM 
Consider a limiting thick  𝑀 ≠ 0  circular 

plate of radius a and thickness 2h defined by 

0 ≤ 𝑟 ≤ 𝑎, −𝑕 ≤ 𝑧 ≤ 𝑕. Initially the plate is at zero 

temperature. Let the plate be subjected to  

axisymmetric arbitrary heat flux 

±𝑓(𝑟, 𝑡) prescribed over the upper surface  𝑧 = 𝑕   
and the lower surface  𝑧 = −𝑕 .  The fixed circular 

edge (𝑟 = 𝑎)  is thermally insulated. Assume a 

limiting thick circular plate with internal heat 

generation is free from traction. Under these 

prescribed conditions, the quasi static transient 

thermal stresses are required to be determined. 

The differential equation governing the 

displacement potential function 𝜙 𝑟, 𝑧, 𝑡  is given 

as 

        
𝜕2𝜙

𝜕𝑟2 +
1

𝑟
 
𝜕𝜙

𝜕𝑟
+

𝜕2𝜙

𝜕𝑧2 =  𝐾𝝉      (1)                            

  Where K is the restraint coefficient and 

temperature change 𝜏 = 𝑇 − 𝑇𝑖 ,  𝑇𝑖   is initial 
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temperature. Displacement function 𝜙 is known as 

Goodier’s thermoelastic displacement potential. 

The temperature of the plate at time t satisfying the 

heat conduction equation as follows, 

       
𝜕2𝑇

𝜕𝑟2 +
1

𝑟
 
𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑧2 +  
𝑞

𝑘
=  

1

𝛼

𝜕𝑇

𝜕𝑡
  

                     

                  (2)                          

  with the boundary conditions 

    𝑇 =  ±𝑓(𝑟, 𝑡) 𝑎𝑡 𝑧 = ±𝑕, 0 ≤ 𝑟 ≤ 𝑎   
                    

      (3)   

    
𝜕𝑇

𝜕𝑟
= 0 𝑎𝑡 𝑟 = 𝑎, −𝑕 ≤ 𝑧 ≤ 𝑕  

                  

      (4)       

    𝑞 𝑟, 𝑧, 𝑡 =  𝛿 𝑟 − 𝑟0 sin 𝛽𝑚𝑧  1 − 𝑒−𝑡 , 0 <
𝑟0 < 𝑎                                                         

(5)      

     and the initial condition   

     𝑇 = 0             at  𝑡 = 0             

       

      (6)           

where 𝛼 is the thermal diffusivity of the material of 

the plate, k is the thermal conductivity of the 

material of the plate, q is the internal heat 

generation and 𝛿 𝑟  is well known dirac delta 

function of argument r.  

The Michell’s function M must satisfy 

       ∇2∇2𝑀 = 0                                     
             (7) 

Where 

        ∇2=  
𝜕2

𝜕𝑟2 +
1

𝑟
 
𝜕

𝜕𝑟
+

𝜕2

𝜕𝑧2   (8)

                    

The components of the stresses are 

represented by the thermoelastic displacement 

potential 𝜙 and Michell’s function M as 

        𝜍𝑟𝑟 = 2𝐺  
𝜕2𝜙

𝜕𝑟2 −  𝐾𝜏 + 
𝜕

𝜕𝑧
 𝑣∇2𝑀 − 

𝜕2𝑀

𝜕𝑟2      

     

       (9) 

         𝜍𝜃𝜃 = 2𝐺  
1

𝑟
 
𝜕𝜙

𝜕𝑟
−  𝐾𝜏 +  

𝜕

𝜕𝑧
 𝑣∇2𝑀 −

1

𝑟
 
𝜕𝑀

𝜕𝑟
    

                     

      (10) 

          𝜍𝑧𝑧 = 2𝐺  
𝜕2𝜙

𝜕𝑧2 −  𝐾𝜏 +  
𝜕

𝜕𝑧
 (2 − 𝑣)∇2𝑀 −

 𝜕2𝑀𝜕𝑧2                                                                        
     (11) and 

          𝜍𝑟𝑧 = 2𝐺  
𝜕2𝜙

𝜕𝑟𝜕𝑧
+  

𝜕

𝜕𝑟
 (1 − 𝑣)∇2𝑀 − 

𝜕2𝑀

𝜕𝑧2    

       

         (12) 

Where G and v are the shear modulus and 

Poisson’s ratio respectively. 

For traction free surface stress functions   

       𝜍𝑟𝑟 = 𝜍𝑟𝑧 = 0 𝑎𝑡 𝑧 = 𝑕  
     

      (13) 

Equations (1) to (13) constitute mathematical 

formulation of the problem.  

 

III. SOLUTION 
 To obtain the expression for temperature T 

(r, z, t), we introduce the finite Hankel transform  

over the variable r and its inverse transform 

defined as 

         𝑇  𝛽𝑚 , 𝑧, 𝑡 =   𝑟 𝐾0 𝛽𝑚 , 𝑟 
𝑎

0
 𝑇(𝑟, 𝑧, 𝑡) 𝑑𝑟     

                   

     (14) 

         𝑇(𝑟, 𝑧, 𝑡)  =   𝐾0 𝛽𝑚 , 𝑟 ∞
𝑚=1  𝑇  𝛽𝑚 , 𝑧, 𝑡  

                   

     (15) 

Where, 

 𝐾0 𝛽𝑚 , 𝑟 =   
 2

𝑎
  

𝐽0(𝛽𝑚 𝑟)

𝐽0(𝛽𝑚 𝑎)
 ,   

                 

                   (16)       

   𝛽1, 𝛽2 … ..    are   roots of transcendental equation 

      𝐽1 𝛽𝑚𝑎 =  0     

                      

       (17)    

Where  𝐽𝑛 𝑥  is Bessel function of the first kind of 

order n.  

On applying the finite Hankel transform defined in 

the Eq. (14), its inverse transform defined in (15) 

and applying Laplace transform and its inverse by 

residue method successively to the Eq. (2), one 

obtains the expression for temperature as   

  𝑇(r, z, t)  =     
 2

𝑎
  

𝐽0(𝛽𝑚 𝑟)

𝐽0(𝛽𝑚 𝑎)
 ∞

𝑛=1   ∞ 
𝑚=1  

                     

×     
𝑛𝜋𝛼

2 −1 𝑛  𝑕2    sin[ 
𝑛𝜋

2𝑕
  z + h ] + sin[ 

𝑛𝜋

2𝑕
  z −

h ] 𝑔(𝑡) 

                       

+  
1

2αβm
2 +

𝑒−𝑡

1−2αβm
2 +

𝑒−2αβm2𝑡2αβm2(2αβm2−1)𝛼𝐷𝑚sinβm𝑧    𝑘                                                           
(18) 

where 

      𝐷𝑚 =
 2

𝑎

𝑟0𝐽0(𝛽𝑚 𝑟0)

𝐽0(𝛽𝑚 𝑎)
 

   𝑔 𝑡 =   𝑒
−𝛼  𝛽𝑚

2+
𝑛2𝜋2

4𝑕2   𝑡−𝑢 
 

𝑡

0
 

                ×  
𝛼 𝐷𝑚

𝑘 
sin β

m
h  

1

2αβm
2 +

𝑒−𝑢

1−2αβm
2 +

𝑒−2αβm2𝑢2αβm22αβm2−1−𝐹𝛽𝑚,u 𝑑𝑢 

Since initial temperature 𝑇𝑖 = 0, 𝜏 = 𝑇 − 𝑇𝑖  

        𝜏 = 𝑇    

           

(19)          

Michell’s function M 
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Now let’s assume that Michell’s function M, which 

satisfy Eq.(7)  is given by  

    𝑀 =   
 2

𝑎
𝐾   

𝐽0 𝛽𝑚 𝑟 

𝐽0 𝛽𝑚 𝑎 
∞
𝑛=1

∞
𝑚=1 𝑓(𝑟, 𝑡) 

      

 ×
 𝐵𝑚𝑛 𝑠𝑖𝑛 𝑕 𝛽𝑚𝑧 + 𝐶𝑚𝑛 𝛽𝑚𝑧  𝑐𝑜𝑠 𝑕 𝛽𝑚𝑧             
                        

 (20) 

Where 𝐵𝑚𝑛   and 𝐶𝑚𝑛   are arbitrary functions, which 

can be determined by using condition (13). 

Goodiers Thermoelastic Displacement Potential 

𝜙(𝑟, 𝑧, 𝑡) 

Assuming the displacement function 𝜙 𝑟, 𝑧, 𝑡  

which satisfies Eq. (1) as    

 

  𝜙(𝑟, 𝑧, 𝑡) =

𝐾   
 2

𝑎

∞
𝑛=1

𝐽0 𝛽𝑚 𝑟 

𝐽0 𝛽𝑚 𝑎 
    

−𝑛𝜋𝛼

2 −1 𝑛  𝑕2 
1

 𝛽𝑚
2+

𝑛2𝜋2

4𝑕2  
  ∞ 

𝑚=1  

                    

 ×   𝑠𝑖𝑛[ 
𝑛𝜋

2𝑕
  𝑧 + 𝑕 ] + 𝑠𝑖𝑛[ 

𝑛𝜋

2𝑕
  𝑧 − 𝑕 ] 𝑔(𝑡) 

                     − 
𝛼 𝐷𝑚   

  2𝑘𝛽𝑚
2  
  

1

2𝛼𝛽𝑚
2 +

𝑒−𝑡

1−2𝛼𝛽𝑚
2 +

𝑒−2𝛼𝛽𝑚2𝑡2𝛼𝛽𝑚2(2𝛼𝛽𝑚2−1)𝑠𝑖𝑛𝛽𝑚𝑧                 
               (21) 

Now  using Eqs. (18), (20) and (21) in Eqs. (9), 

(10), (11) and (12), one obtains the expressions for 

stresses respectively as    

    
𝜍𝑟𝑟

𝐾
 =

2𝐺   
 2

𝑎

∞
𝑛=1  

1

𝐽0 𝛽𝑚 𝑎 
       

𝑛𝜋𝛼

2 −1 𝑛  𝑕2   
𝛽𝑚

2𝐽1 ′ 𝛽𝑚 𝑟 

 𝛽𝑚
2+

𝑛2𝜋2

4𝑕2  
−∞ 

𝑚=1

𝐽0 𝛽𝑚𝑟     

             ×  sin[ 
𝑛𝜋

2𝑕
  z + h ] + sin[ 

𝑛𝜋

2𝑕
  z −

h]𝑔(𝑡) 

             +
𝛼 𝐷𝑚 sin  βm 𝑧   

  𝑘 
 

𝐽1 ′ 𝛽𝑚 𝑟 

2 𝛽𝑚
2+

𝑛2𝜋2

4𝑕2  
−

𝐽0𝛽𝑚𝑟12αβm2+𝑒−𝑡1−2αβm2+𝑒−2αβm2𝑡2αβm
2(2αβm2−1) 

           

+ 𝐽1′ 𝛽𝑚𝑟  𝛽𝑚
2[ 𝐵𝑚𝑛  𝛽𝑚 F 𝛽𝑚 , 𝑡 cosh⁡(𝛽𝑚𝑧)]     

           

+ 𝐶𝑚𝑛  𝛽𝑚
2  

2𝑣 β
m

 𝐽0 𝛽𝑚𝑟 cosh 𝛽𝑚𝑧 + F 𝛽𝑚 , 𝑡  𝐽1′ 𝛽𝑚𝑟 

×   β
m

 cosh 𝛽𝑚𝑧 +  𝛽𝑚
2𝑧 sinh 𝛽𝑚𝑧  

         

    (22) 

       
𝜍𝜃𝜃

𝐾
 =

2𝐺    2

𝑎
∞
𝑛=1   

1

𝐽0 𝛽𝑚 𝑎 
      

𝑛𝜋𝛼

2 −1 𝑛  𝑕2  ∞ 
𝑚=1  

𝛽𝑚  𝐽1 𝛽𝑚 𝑟 

𝑟 𝛽𝑚
2+

𝑛2𝜋2

4𝑕2  
−

𝐽0 𝛽𝑚𝑟        

      ×  sin[ 
𝑛𝜋

2𝑕
  z + h ] + sin[ 

𝑛𝜋

2𝑕
  z −

h ] 𝑔(𝑡)  

       +
𝛼 𝐷𝑚 sin  βm 𝑧   

  𝑘 
 

𝐽1 𝛽𝑚 𝑟 

2βm r  𝛽𝑚
2

+
𝑛2𝜋2

4𝑕2  
−

𝐽0 𝛽𝑚𝑟   
1

2αβm
2 +

𝑒−𝑡

1−2αβm
2 +

𝑒−2αβm
2𝑡

2αβm
2(2αβm

2−1)
  

                    

+ 𝐵𝑚𝑛  𝛽𝑚
2  F 𝛽𝑚 , 𝑡 cosh⁡(𝛽𝑚𝑧)

𝐽1 𝛽𝑚 𝑟 

𝑟
 

+ 𝐶𝑚𝑛  𝛽𝑚
2F 𝛽𝑚 , 𝑡  

2𝑣 β
m

 𝐽0 𝛽𝑚𝑟 cosh 𝛽𝑚𝑧 + cosh⁡(𝛽𝑚𝑧)
𝐽1 𝛽𝑚 𝑟 

𝑟

×  βm z sinh⁡(𝛽𝑚𝑧)
                      

   (23) 

       
𝜍𝑧𝑧

𝐾
 =

2𝐺   
 2

𝑎

∞
𝑛=1

𝐽0 𝛽𝑚 𝑟 

𝐽0 𝛽𝑚 𝑎 
    

𝑛3𝜋3𝛼

8 −1 𝑛  𝑕4  
1

 𝛽𝑚
2+

𝑛2𝜋2

4𝑕2  
     ∞ 

𝑚=1  

                ×     sin[ 
𝑛𝜋

2𝑕
  z + h ] + sin[ 

𝑛𝜋

2𝑕
  z −

h ] 𝑔(𝑡) 

+
𝛼 𝐷𝑚 sin β

m
𝑧   

 2 𝑘 
 

1

2αβ
m

2 +
𝑒−𝑡

1 − 2αβ
m

2

+
𝑒−2αβm

2𝑡

2αβ
m

2(2αβ
m

2 − 1)
  

                

− 
𝑛𝜋𝛼

2 −1 𝑛  𝑕2   sin[ 
𝑛𝜋

2𝑕
  z + h ] + sin[  

𝑛𝜋

2𝑕
  z −

h]𝑔(𝑡) 

                − 𝐵𝑚𝑛  𝛽𝑚
2 F 𝛽𝑚 , 𝑡 sinh⁡(𝛽𝑚𝑧) +

 𝐶𝑚𝑛  𝛽𝑚
2F 𝛽𝑚 , 𝑡  

                 

×  2 1 − 𝑣 sinh 𝛽𝑚𝑧 −  β
m

z cosh⁡(𝛽𝑚𝑧)     

     

 (24) 

   
𝜍𝑟𝑧

𝐾
 = 2𝐺   

 2

𝑎

∞ 
𝑛=1  

𝛽𝑚  𝐽1 𝛽𝑚 𝑟 

𝐽0 𝛽𝑚𝑎 
     

𝑛2𝜋2𝛼

4 −1 𝑛  𝑕3
  

1

 𝛽𝑚
2+

𝑛2𝜋2

4𝑕2  
    ∞ 

𝑚=1  

           ×  cos[
𝑛𝜋

2𝑕
  z + h ] + cos[

𝑛𝜋

2𝑕
  z −

h]𝑔(𝑡) 

            +
𝛼 𝐷𝑚 𝑐𝑜𝑠  βm 𝑧   

 2 𝑘 𝛽𝑚
 

1

2αβm
2 +

𝑒−𝑡

1−2αβm
2 +

𝑒−2αβm2𝑡2αβm2(2αβm2−1) 

             − 𝐵𝑚𝑛  𝛽𝑚
2 F 𝛽𝑚 , 𝑡 sinh⁡(𝛽𝑚𝑧) +

 𝐶𝑚𝑛  𝛽𝑚
2F 𝛽𝑚 , 𝑡  

             ×  2𝑣 sinh 𝛽𝑚𝑧 −  β
m

z cosh⁡(𝛽𝑚𝑧)     

     

  (25) 

In order to satisfy condition Eq. (13), solving Eqs. 

(22) and (25) for 𝐵𝑚𝑛   and 𝐶𝑚𝑛   one obtains  

 

 𝐶𝑚𝑛 =
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1

 𝛽𝑚
2𝑅

      −
𝛼 𝐷𝑚

𝑘 
sin 𝛽𝑚𝑕 sinh 𝛽𝑚𝑕   

𝐽1 ′ 𝛽𝑚 𝑎 

2 𝛽𝑚
2

+
𝑛2𝜋2

4𝑕2  
−

𝐽0 𝛽𝑚𝑎     

              ×  
1

2αβm
2 +

𝑒−𝑡

1−2αβm
2 +

𝑒−2αβm
2𝑡

2αβm
2(2αβm

2−1)
 +

𝐽1′ 𝛽𝑚𝑎  𝛽𝑚 cosh⁡(𝛽𝑚𝑕)    

              ×   
−𝑛2𝜋2𝛼

4 −1 𝑛  𝑕3  
𝑔(𝑡)  (−1)𝑛 +1 

 𝛽𝑚
2+

𝑛2𝜋2

4𝑕2  
−

𝛼 𝐷𝑚2𝑘𝛽𝑚 
cos𝛽𝑚h12αβm2+𝑒−𝑡1−2αβm2+𝑒−2αβm2𝑡2αβ

m2(2αβm2−1)        (26)  

      𝐵𝑚𝑛  =  
−1

 𝛽𝑚
2
𝑅

   
𝛼 𝐷𝑚

𝑘 
sin 𝛽𝑚𝑕  

𝛽𝑚
2𝐽1 ′ 𝛽𝑚 𝑎 

2 𝛽𝑚
2+

𝑛2𝜋2

4𝑕2  
−

𝐽0 𝛽𝑚𝑎   
1

2αβm
2 +

𝑒−𝑡

1−2αβm
2 +

𝑒−2αβm
2𝑡

2αβm
2(2αβm

2−1)
     

                   ×  2𝑣 sinh 𝛽𝑚𝑕 −  β
m
𝑕 cosh⁡(𝛽𝑚𝑕)       

                  

+
1

F 𝛽𝑚 ,𝑡 
  

2𝑣 β
m

 𝐽0 𝛽𝑚𝑎  cosh 𝛽𝑚 h + 𝐽1′ 𝛽𝑚𝑎  F 𝛽𝑚 , 𝑡 

×  (β
m

cosh 𝛽𝑚 h +  𝛽𝑚
2 𝑕 sinh 𝛽𝑚𝑕 )

   

                 ×   
−𝑛2𝜋2𝛼

4 −1 𝑛  𝑕3  
𝑔(𝑡)  (−1)𝑛 +1 

 𝛽𝑚
2+

𝑛2𝜋2

4𝑕2  
−

𝛼 𝐷𝑚

2𝑘𝛽𝑚  
cos 𝛽𝑚 h  

1

2αβm
2 +

𝑒−𝑡

1−2αβm
2 +

𝑒−2αβm
2𝑡

2αβm
2(2αβm

2−1)
          (27) 

 where   
𝑅 =

 𝐽1′ 𝛽𝑚𝑎  𝛽𝑚  F 𝛽𝑚 , 𝑡  sinh⁡(𝛽𝑚𝑕)   2𝑣 sinh 𝛽𝑚𝑕 −
 βmh cosh⁡(𝛽𝑚𝑕)   
        

+ sinh 𝛽𝑚𝑕  
2𝑣 β

m
 𝐽0 𝛽𝑚𝑎  cosh 𝛽𝑚h + 𝐽1′ 𝛽𝑚𝑎  F 𝛽𝑚 , 𝑡 

×  (β
m

cosh 𝛽𝑚h +  𝛽𝑚
2 𝑕 sinh 𝛽𝑚𝑕 )

  

 

IV. SPECIAL CASE AND NUMERICAL 

CALCULATIONS 
Setting 

  𝑓(𝑟, 𝑡)  =   𝛿 𝑟 − 𝑟0  (1 − 𝑒−𝑡)           

Where 𝛿 𝑟  is well known diract delta function of 

argument r.  

  𝑎 = 2𝑚, for limiting thick plate 𝑕 =
 0.2000000000000000000001𝑚  
  and for limiting thin 

plate 𝑕 = 0.1999999999999999999999  𝑚, 

𝑟0 = 1𝑚, 𝑡 = 2 𝑠𝑒𝑐. 
Material Properties 

The numerical calculation has been 

carried out for steel (0.5% carbon) thin circular 

plate with the material properties defined as 

Thermal diffusivity α = 14.74× 10−6 m2s−1,  
         Specific heat 𝑐𝜌 = 465 J/kg,  

  

         Thermal conductivity k = 53.6 W/m K, 

      Poisson ratio 𝜗 = 0.35,   
Young’s modulus 𝐸 = 130 𝐺 pa, 
Lame constant 𝜇 = 26.67, 

Coefficient of linear thermal expansion 𝑎𝑡 = 13 ×

 10−6 1
𝐾   

Roots of Transcendental Equation 

The 𝛽1 = 1.9159,  𝛽2 = 3.5078,  𝛽3 =
5.0867,  𝛽4 = 6.6618,  𝛽5 = 8.2353, 𝛽6 =
9.8079 are the roots of transcendental equation 

𝐽1 𝛽𝑚𝑎 = 0.  The numerical calculation and the 

graph has been carried out with the help of 

mathematical software Mat lab.  

 

V. DISCUSSION 
In this paper a limiting thick  𝑀 ≠ 0  and 

limiting thin  𝑀 = 0  circular plate is considered 

and determined the expressions for temperature, 

displacement and stresses due to internal heat 

generation within it and we compute the effects of 

Michell function on the thickness of circular plate 

with internal heat generation in terms of stresses 

along radial direction by substituting 𝑀 = 0 in Eqs. 

(22), (23), (24), (25), (26) and (27) and we compare 

the results for  𝑀 = 0, 𝑀 ≠ 0 and depicted 

graphically. As a special case mathematical model 

is constructed by considering steel (0.5% carbon) 

circular plate with the material properties specified 

above. 

 

 
Fig.1 Radial stresses 

σrr

K
  for (M= 0).                            

 

 
Fig. 2 Radial stresses 

σrr

K
  for (M≠0). 
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Fig. 4 Angular  stresses  

σθθ

K
  for (M≠0). 

 
 Fig. 5 Axial stresses  

σzz

K
  for (M = 0).

                   

 
Fig. 6 Axial stresses  

σzz

K
  for (M ≠0). 

 
Fig. 7 Stress 

σrz

K
  for (M= 0).                                    

 

 
Fig. 8 Stress 

σrz

K
  for (M≠ 0). 

 

From figure 1 and 2, it is observed that 

due to Michell function the radial stress 
σrr

K
 is 

increased in the range of 107 along radial direction. 

From figure 3 and 4, it is observed that due to 

Michell function the angular stress 
σθθ

K
 is increased 

in the range of 106 along radial direction. 

From figure 5 and 6, it is observed that 

due to Michell function the axial stress 
σzz

K
 is 

increased in the range of 104 along radial direction. 

From figure 7 and 8, it is observed that due to 

Michell function the stress 
σrz

K
 is slightly decreased 

along radial direction. 

 

VI. CONCLUSION 
We can conclude that difference in the 

thickness of thin and thick circular plate is 

mechanically zero even though the radial stress 
σrr

K
, angular stress 

σθθ

K
, axial stress 

σzz

K
 are 

tremendously  increased due to the existance of 

Michell function whereas stress 
σrz

K
 is negligibly 
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vary with the thickness along radial direction. The 

results obtained here are useful in engineering 

problems particularly in the determination of state 

of stress in circular plate and base of furnace of 

boiler of a thermal power plant and gas power 

plant. 

 

ACKNOWLEDGEMENTS 
The authors are thankful to UGC, New 

Delhi India to provide the partial finance assistance 

under minor research project scheme File No.47 

747/13(WRO). 

 

REFERENCES 
[1] W. Nowacki, The state of stresses in a 

thick circular plate due to temperature 

field, Bull. Acad. Polon. Sci., Scr. Scl. 

Tech.,5, 1957, 227. 

[2] C. M. Bhongade  and M. H. Durge, An 

inverse steady state thermal stresses in a 

thin clamped circular plate with internal 

heat generation, American Journal of 

Engineering Research, 2, 2013, 276-281. 

[3] C. M. Bhongade  and M. H. Durge, Effect 

of Michell function on steady state 

behavior of thick circular plate, IOSR 

Journal of  Mathematics, 8, 2013, 55-60.     

[4] V. S. Kulkarni and K. C. Deshmukh, 

Quasi Static Thermal Stresses in a Thick 

Circular Plate due to  Axisymmetric heat 

supply, Int. J. of Appl. Math and Mech. 5, 

2009, 38-50. 

[5] N. Noda, R.B. Hetnarski and Y. 

Tanigawa, Thermal Stresses, 2  nd  edn., 

(Taylor, and Francis New York, 259-261, 

2003). 

[6] M. N. Ozisik, Boundary value problems of 

heat conduction (International Text Book 

Company, Scranton, Pennsylvania, 1968).  

 

 


